NSTX UCLA Supported by

Conversion of *AEs to Kinetic Alfven Waves

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

*AE – KAW couple near the Alfvén continuum

Kinetic Alfvén Waves (KAW) will helpt to resolve outstanding issues for robust predictions of *AE stability and their effects:

- Radiative damping
- Interaction with continuum continuum damping
- Small scale structure effect on WPI
- Generation of parallel electric fields for GAE driven e-transport

Example of high-f GAE (RSAEs are similar) – KAW interaction (schematic):

WNSTX UCLA

*AE – KAW interaction can change how fast-ions heat plasma

- Continuum interaction of reverse shear Alfvén eigenmodes and TAEs is common in NSTX and is expected to excite KAW
- KAWs have short radial scale \Rightarrow damp on background plasma electrons
 - For upsweeping RSAE: KAW radiates away from continuum intersection
 - KAW k_r ranges from m^{1/4}/(ρa)^{1/2} near continuum to 1/ ρ further away $(\rho \sim \rho_i, \rho_s)$ $\rho \sim 1 \text{ cm}, a = 85 \text{ cm}, m \sim 10 \Rightarrow \sim 1 \text{ cm}^{-1} > k_r > \sim 0.2 \text{ cm}^{-1}$

 $\lambda = 2\pi/k_r$ scale seems measurable with reflectometer/BES

Coupling to KAWs (a.k.a. *radiative damping*) can efficiently damp RSAEs
⇒ changes how fast-ions heat plasma

Proposed experiment: Observe and characterize KAWs excited by continuum interaction of RSAEs (GAEs) (1 day)

- 1. Create reverse shear NB-heated plasma to excite RSAEs key requirement
 - Easier to interpret/model (w/NOVA) than multiple TAE solutions
- 2. High density is required use close-spaced reflectometer array to detect KAWs
 - 5 channel closely spaced (Δf = 350MHz) reflectometer array
 - frequency adjustable (Test Cell entry required): 3.4 7.4 x 10¹⁹ m⁻³ (53 GHz 78 GHz)
 - channels span 1.4 GHz (~ 2 % of center frequency \Rightarrow short radial span)
- **3.** *q*-profile evolution would guarantee that continuum moves interaction region through reflectometer measurement region:
 - *q*-profile minimum forms "well" in continuum
 - q_{min} sweep causes upward RSAE frequency sweep from bottom of "well"
 - RSAEs intersect continuum during sweep intersection moves radially outward as RSAE frequency sweeps up
 - set reflectometer to reflect inside RSAE "well" outboard of q_{min} radius
- 4. Scan KAW scale parameters ρ_i , ρ_s and m (depends on n and q_{min}) and compare with measurements
- Model shot (?) to be determined constraints include:
 - monotonic density profile, density in **range 3.4 7.4 x 10¹⁹ m**⁻³ near q_{min} radius
 - reflectometer sensitivity limits: need KAW scale > ρ_i , ρ_s and > 1.63(L_n/k_0^2)^{1/3} (microwave "Airy width")
 - L_n = density gradient scale, k_0 = microwave vacuum wavelength ~ 5 mm